Copied to
clipboard

G = C23.200C24order 128 = 27

53rd central extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.200C24, C24.547C23, C22.392+ (1+4), C22.242- (1+4), (C4×D4)⋊19C4, C4217(C2×C4), C425C43C2, C428C412C2, C23.8Q84C2, C22.91(C23×C4), (C23×C4).44C22, (C2×C42).12C22, C23.7Q814C2, C23.222(C4○D4), C23.34D410C2, (C22×C4).465C23, C23.124(C22×C4), C24.C222C2, C23.23D4.3C2, C23.63C233C2, C22.3(C42⋊C2), C2.2(C22.32C24), (C22×D4).475C22, C2.11(C22.11C24), C2.C42.37C22, C2.8(C23.33C23), C2.2(C22.33C24), C4⋊C441(C2×C4), (C2×C4×D4).29C2, (C4×C22⋊C4)⋊7C2, C22⋊C438(C2×C4), (C22×C4)⋊22(C2×C4), (C2×D4).211(C2×C4), C22.85(C2×C4○D4), (C2×C4⋊C4).174C22, (C2×C2.C42)⋊9C2, (C2×C4).223(C22×C4), C2.22(C2×C42⋊C2), (C2×C22⋊C4).25C22, SmallGroup(128,1050)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C23.200C24
C1C2C22C23C22×C4C23×C4C2×C4×D4 — C23.200C24
C1C22 — C23.200C24
C1C23 — C23.200C24
C1C23 — C23.200C24

Subgroups: 524 in 284 conjugacy classes, 140 normal (34 characteristic)
C1, C2 [×3], C2 [×4], C2 [×6], C4 [×18], C22 [×3], C22 [×8], C22 [×22], C2×C4 [×10], C2×C4 [×50], D4 [×8], C23, C23 [×8], C23 [×10], C42 [×4], C42 [×2], C22⋊C4 [×8], C22⋊C4 [×8], C4⋊C4 [×4], C4⋊C4 [×4], C22×C4 [×5], C22×C4 [×16], C22×C4 [×12], C2×D4 [×4], C2×D4 [×4], C24 [×2], C2.C42 [×4], C2.C42 [×10], C2×C42, C2×C42 [×2], C2×C22⋊C4 [×2], C2×C22⋊C4 [×6], C2×C4⋊C4, C2×C4⋊C4 [×4], C4×D4 [×8], C23×C4 [×2], C23×C4 [×2], C22×D4, C2×C2.C42, C4×C22⋊C4, C23.7Q8, C23.34D4, C428C4, C425C4, C23.8Q8 [×2], C23.23D4 [×2], C23.63C23 [×2], C24.C22 [×2], C2×C4×D4, C23.200C24

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], C22×C4 [×14], C4○D4 [×4], C24, C42⋊C2 [×4], C23×C4, C2×C4○D4 [×2], 2+ (1+4) [×3], 2- (1+4), C2×C42⋊C2, C22.11C24, C23.33C23, C22.32C24 [×2], C22.33C24 [×2], C23.200C24

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=1, d2=c, g2=b, ab=ba, ac=ca, ede=gdg-1=ad=da, fef=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Smallest permutation representation
On 64 points
Generators in S64
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 47)(2 20)(3 45)(4 18)(5 42)(6 15)(7 44)(8 13)(9 17)(10 46)(11 19)(12 48)(14 38)(16 40)(21 29)(22 58)(23 31)(24 60)(25 35)(26 62)(27 33)(28 64)(30 50)(32 52)(34 56)(36 54)(37 41)(39 43)(49 57)(51 59)(53 61)(55 63)
(2 52)(4 50)(5 62)(6 39)(7 64)(8 37)(10 22)(12 24)(14 26)(16 28)(17 45)(18 58)(19 47)(20 60)(29 57)(30 46)(31 59)(32 48)(33 63)(34 40)(35 61)(36 38)(42 54)(44 56)
(1 55 51 43)(2 28 52 16)(3 53 49 41)(4 26 50 14)(5 46 36 58)(6 19 33 31)(7 48 34 60)(8 17 35 29)(9 25 21 13)(10 54 22 42)(11 27 23 15)(12 56 24 44)(18 62 30 38)(20 64 32 40)(37 45 61 57)(39 47 63 59)

G:=sub<Sym(64)| (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,47)(2,20)(3,45)(4,18)(5,42)(6,15)(7,44)(8,13)(9,17)(10,46)(11,19)(12,48)(14,38)(16,40)(21,29)(22,58)(23,31)(24,60)(25,35)(26,62)(27,33)(28,64)(30,50)(32,52)(34,56)(36,54)(37,41)(39,43)(49,57)(51,59)(53,61)(55,63), (2,52)(4,50)(5,62)(6,39)(7,64)(8,37)(10,22)(12,24)(14,26)(16,28)(17,45)(18,58)(19,47)(20,60)(29,57)(30,46)(31,59)(32,48)(33,63)(34,40)(35,61)(36,38)(42,54)(44,56), (1,55,51,43)(2,28,52,16)(3,53,49,41)(4,26,50,14)(5,46,36,58)(6,19,33,31)(7,48,34,60)(8,17,35,29)(9,25,21,13)(10,54,22,42)(11,27,23,15)(12,56,24,44)(18,62,30,38)(20,64,32,40)(37,45,61,57)(39,47,63,59)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,47)(2,20)(3,45)(4,18)(5,42)(6,15)(7,44)(8,13)(9,17)(10,46)(11,19)(12,48)(14,38)(16,40)(21,29)(22,58)(23,31)(24,60)(25,35)(26,62)(27,33)(28,64)(30,50)(32,52)(34,56)(36,54)(37,41)(39,43)(49,57)(51,59)(53,61)(55,63), (2,52)(4,50)(5,62)(6,39)(7,64)(8,37)(10,22)(12,24)(14,26)(16,28)(17,45)(18,58)(19,47)(20,60)(29,57)(30,46)(31,59)(32,48)(33,63)(34,40)(35,61)(36,38)(42,54)(44,56), (1,55,51,43)(2,28,52,16)(3,53,49,41)(4,26,50,14)(5,46,36,58)(6,19,33,31)(7,48,34,60)(8,17,35,29)(9,25,21,13)(10,54,22,42)(11,27,23,15)(12,56,24,44)(18,62,30,38)(20,64,32,40)(37,45,61,57)(39,47,63,59) );

G=PermutationGroup([(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,47),(2,20),(3,45),(4,18),(5,42),(6,15),(7,44),(8,13),(9,17),(10,46),(11,19),(12,48),(14,38),(16,40),(21,29),(22,58),(23,31),(24,60),(25,35),(26,62),(27,33),(28,64),(30,50),(32,52),(34,56),(36,54),(37,41),(39,43),(49,57),(51,59),(53,61),(55,63)], [(2,52),(4,50),(5,62),(6,39),(7,64),(8,37),(10,22),(12,24),(14,26),(16,28),(17,45),(18,58),(19,47),(20,60),(29,57),(30,46),(31,59),(32,48),(33,63),(34,40),(35,61),(36,38),(42,54),(44,56)], [(1,55,51,43),(2,28,52,16),(3,53,49,41),(4,26,50,14),(5,46,36,58),(6,19,33,31),(7,48,34,60),(8,17,35,29),(9,25,21,13),(10,54,22,42),(11,27,23,15),(12,56,24,44),(18,62,30,38),(20,64,32,40),(37,45,61,57),(39,47,63,59)])

Matrix representation G ⊆ GL8(𝔽5)

10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00001000
00000100
00000010
00000001
,
10000000
01000000
00400000
00040000
00004000
00000400
00000040
00000004
,
01000000
10000000
00220000
00030000
00003320
00004433
00004203
00000003
,
40000000
04000000
00400000
00040000
00000100
00001000
00004411
00002204
,
10000000
04000000
00100000
00340000
00001000
00000400
00000310
00004234
,
30000000
03000000
00300000
00030000
00001000
00000100
00002240
00002204

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,3,4,4,0,0,0,0,0,3,4,2,0,0,0,0,0,2,3,0,0,0,0,0,0,0,3,3,3],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,4,2,0,0,0,0,1,0,4,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,4],[1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,4,0,0,0,0,0,4,3,2,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,2,2,0,0,0,0,0,1,2,2,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4] >;

44 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A···4H4I···4AD
order12···22222224···44···4
size11···12222442···24···4

44 irreducible representations

dim1111111111111244
type+++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C4C4○D42+ (1+4)2- (1+4)
kernelC23.200C24C2×C2.C42C4×C22⋊C4C23.7Q8C23.34D4C428C4C425C4C23.8Q8C23.23D4C23.63C23C24.C22C2×C4×D4C4×D4C23C22C22
# reps11111112222116831

In GAP, Magma, Sage, TeX

C_2^3._{200}C_2^4
% in TeX

G:=Group("C2^3.200C2^4");
// GroupNames label

G:=SmallGroup(128,1050);
// by ID

G=gap.SmallGroup(128,1050);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,758,219,675,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=1,d^2=c,g^2=b,a*b=b*a,a*c=c*a,e*d*e=g*d*g^-1=a*d=d*a,f*e*f=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽